senooken JP Social
  • FAQ
  • Login
senooken JP Socialはsenookenの専用分散SNSです。
  • Public

    • Public
    • Network
    • Groups
    • Popular
    • People

Notices by Akionux (akionux@status.akionux.net)

  1. Akionux (akionux@status.akionux.net)'s status on Sunday, 04-Sep-2022 08:23:28 JST Akionux Akionux
    フランスで「ONE PIECE」上映中に観客が大暴れ… お国柄?日本アニメの変わった“観られ方”(デイリー新潮) - Yahoo!ニュース - https://news.yahoo.co.jp/articles/553fc863c85121c591aa3bf4c8751d30e29bae55?page=1
    In conversation Sunday, 04-Sep-2022 08:23:28 JST from status.akionux.net permalink

    Attachments


  2. Akionux (akionux@status.akionux.net)'s status on Sunday, 04-Sep-2022 08:11:24 JST Akionux Akionux
    『耳をすませば』テレビ放映でコンプラツッコミ殺到 自転車二人乗りや個人情報流出|ニフティニュース - https://news.nifty.com/article/entame/etc/12184-1847083/
    In conversation Sunday, 04-Sep-2022 08:11:24 JST from status.akionux.net permalink

    Attachments


  3. Akionux (akionux@status.akionux.net)'s status on Saturday, 03-Sep-2022 22:32:53 JST Akionux Akionux
    画像生成AI「Stable Diffusion」をKritaで使えるようにするオープンソースのプラグイン登場 - GIGAZINE - https://gigazine.net/news/20220902-stable-diffusion-krita-plugin/
    In conversation Saturday, 03-Sep-2022 22:32:53 JST from status.akionux.net permalink

    Attachments


  4. Akionux (akionux@status.akionux.net)'s status on Saturday, 03-Sep-2022 12:09:51 JST Akionux Akionux
    「Stable Diffusionであの構図や雰囲気を再現するには何と書けば良いのか?」が目で見て一発でわかる「The Ai Art」 - GIGAZINE - https://gigazine.net/news/20220902-stable-diffusion-the-ai-art/
    In conversation Saturday, 03-Sep-2022 12:09:51 JST from status.akionux.net permalink

    Attachments


  5. Akionux (akionux@status.akionux.net)'s status on Friday, 02-Sep-2022 21:21:55 JST Akionux Akionux
    in reply to
    • Akionux
    @akionux お家で stable diffusion 動いた!やったね
    In conversation Friday, 02-Sep-2022 21:21:55 JST from status.akionux.net permalink
  6. Akionux (akionux@status.akionux.net)'s status on Friday, 02-Sep-2022 07:17:36 JST Akionux Akionux
    仮面ライダーブラック? 漆黒のバッタ、草刈り中に発見(南日本新聞) - Yahoo!ニュース - https://news.yahoo.co.jp/articles/863726400b12f96f0106a1bd131d6e028551bdc6
    In conversation Friday, 02-Sep-2022 07:17:36 JST from status.akionux.net permalink

    Attachments


  7. Akionux (akionux@status.akionux.net)'s status on Thursday, 01-Sep-2022 15:35:16 JST Akionux Akionux
    Introducing nvFuser, a deep learning compiler for PyTorch | PyTorch - https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
    In conversation Thursday, 01-Sep-2022 15:35:16 JST from status.akionux.net permalink

    Attachments


  8. Akionux (akionux@status.akionux.net)'s status on Wednesday, 31-Aug-2022 23:17:09 JST Akionux Akionux
    "How Crash Bandicoot Hacked The Original Playstation | War Stories | Ars Technica" を YouTube で見る - https://youtu.be/izxXGuVL21o
    クラッシュ・バンディクーがいかに技術、デザイン、考え方で抜きん出ていたかがよくわかった。
    In conversation Wednesday, 31-Aug-2022 23:17:09 JST from status.akionux.net permalink

    Attachments


  9. Akionux (akionux@status.akionux.net)'s status on Wednesday, 31-Aug-2022 18:38:01 JST Akionux Akionux
    Intel製CPUでも画像生成AI「Stable Diffusion」を動かせる「stable_diffusion.openvino」が登場、誰でもダウンロード可能に - GIGAZINE - https://gigazine.net/news/20220831-stable-diffusion-openvino/
    In conversation Wednesday, 31-Aug-2022 18:38:01 JST from status.akionux.net permalink

    Attachments


  10. Akionux (akionux@status.akionux.net)'s status on Wednesday, 24-Aug-2022 14:54:23 JST Akionux Akionux
    Canonical enables Ubuntu on Allwinner’s Nezha RISC-V boards | Canonical - https://canonical.com/blog/canonical-enables-ubuntu-on-allwinners-nezha-risc-v-boards
    In conversation Wednesday, 24-Aug-2022 14:54:23 JST from status.akionux.net permalink

    Attachments


  11. Akionux (akionux@status.akionux.net)'s status on Friday, 05-Aug-2022 12:23:27 JST Akionux Akionux
    Gradio - https://gradio.app/
    In conversation Friday, 05-Aug-2022 12:23:27 JST from status.akionux.net permalink

    Attachments

    1. Domain not in remote thumbnail source whitelist: gradio.app
      Gradio
      from @Gradio
      Build & Share Delightful Machine Learning Apps
  12. Akionux (akionux@status.akionux.net)'s status on Friday, 05-Aug-2022 08:09:02 JST Akionux Akionux
    半導体洗浄時におけるナノ構造物の倒壊の様子、北大などが詳細観察に成功 (1) | TECH+ - https://news.mynavi.jp/techplus/article/20220801-2413594/
    半導体と表面張力にこういう関わりがあるのか
    In conversation Friday, 05-Aug-2022 08:09:02 JST from status.akionux.net permalink

    Attachments

    1. Domain not in remote thumbnail source whitelist: news.mynavi.jp
      半導体洗浄時におけるナノ構造物の倒壊の様子、北大などが詳細観察に成功 (1)
      北海道大学(北大)とSCREENホールディングスは7月29日、半導体洗浄時のナノ構造物の倒壊挙動を明らかにしたことを発表した。
  13. Akionux (akionux@status.akionux.net)'s status on Thursday, 04-Aug-2022 18:47:49 JST Akionux Akionux
    Rooting instructions | Valetudo - https://valetudo.cloud/pages/general/rooting-instructions.html
    In conversation Thursday, 04-Aug-2022 18:47:49 JST from status.akionux.net permalink

    Attachments

    1. Domain not in remote thumbnail source whitelist: valetudo.cloud
      Rooting instructions
      Rooting instructions
  14. Akionux (akionux@status.akionux.net)'s status on Saturday, 30-Jul-2022 22:28:26 JST Akionux Akionux
    ドウシシャの照明&サーキュレーターが想像を超えてQOL爆上がり【家電レビュー】- 家電 Watch - https://kaden.watch.impress.co.jp/docs/column_review/kaden/1426620.html
    In conversation Saturday, 30-Jul-2022 22:28:26 JST from status.akionux.net permalink

    Attachments

    1. Domain not in remote thumbnail source whitelist: kaden.watch.impress.co.jp
      ドウシシャの照明&サーキュレーターが想像を超えてQOL爆上がり【家電レビュー】
      from 株式会社インプレス
      仕事部屋であり、トレーニング部屋でもある筆者宅の4畳半。デスクとパソコン2台とモニター類3台で部屋の半分近くを占め、さらに撮影ブース、トレーニング用の室内自転車があって、一時的にメーカーなどからお借りしているアイテムやら空き箱やらが転がっているので、時には立錐の余地もない状態になることもある。
  15. Akionux (akionux@status.akionux.net)'s status on Saturday, 16-Jul-2022 16:59:08 JST Akionux Akionux
    北海道道 大泉洋SP~スターの素顔に“ミスター”鈴井貴之が迫る!
    https://plus.nhk.jp/watch/st/010_g1_2022071555752?playlist_id=baa8cbd5-e614-419e-a46e-15576189efc0
    In conversation Saturday, 16-Jul-2022 16:59:08 JST from status.akionux.net permalink

    Attachments

    1. No result found on File_thumbnail lookup.
      https://plus.nhk.jp/watch/st/010_g1_2022071555752?playlist_id=baa8cbd5-e614-419e-a46e-15576189efc0
  16. Akionux (akionux@status.akionux.net)'s status on Saturday, 16-Jul-2022 10:25:17 JST Akionux Akionux
    in reply to
    • Akionux
    SBCでRK3588Sのメモリ32GBはかなり強い
    In conversation Saturday, 16-Jul-2022 10:25:17 JST from status.akionux.net permalink
  17. Akionux (akionux@status.akionux.net)'s status on Saturday, 16-Jul-2022 10:22:15 JST Akionux Akionux
    in reply to
    • Akionux
    これ読んだけど、EfficientFormerよりパラメータのレンジが高いとこにあるみたい
    In conversation Saturday, 16-Jul-2022 10:22:15 JST from status.akionux.net permalink
  18. Akionux (akionux@status.akionux.net)'s status on Friday, 15-Jul-2022 19:19:34 JST Akionux Akionux
    Orange Pi 5 could be the most affordable Rockchip RK3588S SBC - CNX Software - https://www.cnx-software.com/2022/07/15/orange-pi-5-most-affordable-rockchip-rk3588s-sbc/
    In conversation Friday, 15-Jul-2022 19:19:34 JST from status.akionux.net permalink

    Attachments

    1. Domain not in remote thumbnail source whitelist: www.cnx-software.com
      Orange Pi 5 could be the most affordable Rockchip RK3588S SBC - CNX Software
      from @cnxsoft
      Orange Pi 5 (LTS) is an upcoming single board computer powered by Rockchip RK3588S cost-down octa-core Cortex-A76/A55 processor that should offer one of
  19. Akionux (akionux@status.akionux.net)'s status on Wednesday, 13-Jul-2022 12:43:29 JST Akionux Akionux
    [2207.05221] Language Models (Mostly) Know What They Know - https://arxiv.org/abs/2207.05221
    In conversation Wednesday, 13-Jul-2022 12:43:29 JST from status.akionux.net permalink

    Attachments

    1. Domain not in remote thumbnail source whitelist: static.arxiv.org
      Language Models (Mostly) Know What They Know
      We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and to the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.
  20. Akionux (akionux@status.akionux.net)'s status on Wednesday, 13-Jul-2022 12:42:57 JST Akionux Akionux
    [2207.05501] Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios - https://arxiv.org/abs/2207.05501
    コスパViTの競争が最近かなり激しい
    つい最近出たEfficientFormer、超えられた?
    In conversation Wednesday, 13-Jul-2022 12:42:57 JST from status.akionux.net permalink

    Attachments

    1. Domain not in remote thumbnail source whitelist: static.arxiv.org
      Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios
      Due to the complex attention mechanisms and model design, most existing vision Transformers (ViTs) can not perform as efficiently as convolutional neural networks (CNNs) in realistic industrial deployment scenarios, e.g. TensorRT and CoreML. This poses a distinct challenge: Can a visual neural network be designed to infer as fast as CNNs and perform as powerful as ViTs? Recent works have tried to design CNN-Transformer hybrid architectures to address this issue, yet the overall performance of these works is far away from satisfactory. To end these, we propose a next generation vision Transformer for efficient deployment in realistic industrial scenarios, namely Next-ViT, which dominates both CNNs and ViTs from the perspective of latency/accuracy trade-off. In this work, the Next Convolution Block (NCB) and Next Transformer Block (NTB) are respectively developed to capture local and global information with deployment-friendly mechanisms. Then, Next Hybrid Strategy (NHS) is designed to stack NCB and NTB in an efficient hybrid paradigm, which boosts performance in various downstream tasks. Extensive experiments show that Next-ViT significantly outperforms existing CNNs, ViTs and CNN-Transformer hybrid architectures with respect to the latency/accuracy trade-off across various vision tasks. On TensorRT, Next-ViT surpasses ResNet by 5.4 mAP (from 40.4 to 45.8) on COCO detection and 8.2% mIoU (from 38.8% to 47.0%) on ADE20K segmentation under similar latency. Meanwhile, it achieves comparable performance with CSWin, while the inference speed is accelerated by 3.6x. On CoreML, Next-ViT surpasses EfficientFormer by 4.6 mAP (from 42.6 to 47.2) on COCO detection and 3.5% mIoU (from 45.2% to 48.7%) on ADE20K segmentation under similar latency. Code will be released recently.
  • Before

User actions

    Akionux

    Akionux

    Nagoya, Japan

    http://www.akionux.net/

    XMPP:anishimu@akionux.net GPG:0xF4EA34B4

    Tags
    • (None)
    WebSub
    Inactive

    Following 1

    • せのお (妹尾 賢)

    Followers 0

      Groups 0

        Statistics

        User ID
        7
        Member since
        4 May 2018
        Notices
        915
        Daily average
        0

        Feeds

        • Atom
        • Help
        • About
        • FAQ
        • TOS
        • Privacy
        • Source
        • Version
        • Contact

        senooken JP Social is a social network, courtesy of senooken. It runs on GNU social, version 2.0.2-beta0, available under the GNU Affero General Public License.

        Creative Commons Attribution 3.0 All senooken JP Social content and data are available under the Creative Commons Attribution 3.0 license.